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Scope & How it Ties to DOE-OE Mission

C Develop reliable battery state of health model
C ldentify gaps in current state of the art
C Plug in those gaps

C Use topdown approach to identify key degradation
parameters
C Leverage on irhouse data being gathered (Reliability)
C Feed key results to bottorrup model

C Develop path to reliable Battery Management System

¢ OE mission reliable & high energy storage penetration
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Degradation Mechanism

Our approach: orms at

SElinsulator, Solvent graphite surface diffusion +

diffusion [1.] . charge transfer mixed kinetics
— How does intercalation T
= take place?
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Inner SE| Electron tunneling
expected to control SEI
growth rate [2]
But same electrons have
_ to reach graphite so
G Graphite intercalation is also
Li+ sloweddown
Q solvent [1] M. Pinson et al, ElectrochemSoc., 160 (2) (2013) A248250

[2] F. Kindermanret al, JElectrochemSoc., 164 (12) (2017) E28&294 4
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Findings N

» Temperature is most important . :f;h':'ﬂ',’l‘)‘;: / g

degradation parameter Q PR qpv\‘/; NS

B Materials selection = | $@°// e

B Cell design = il /',//

B Temperature (T) distribution Al /A// '/'@,im ‘
» Interaction term between SOC and T {/’{, T = ‘LT(,?",S 8
» Interaction between current (1) and Current (A)

dVv/dQ " e M
» Solid Electrolyte Interphase (SEI) growth Tl N

mechanism hypothesis validated

B Mixed kinetics T solvent diffusion/charge LFP

transfer
B Pathway towards LTO

@ Safe cell design
® Battery Management System

Energies2015 8, 81758192; doi:10.3390/en8088175 5
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Types of Models and Gaps

A Types
A Empirical i fit to entire data set
A Semi empirical i equivalent circuit
A In both approaches, interactions not considered
A Finite difference or finite element

A Gaps in top down model
A Aging and cycling related effects calculated separately

A Greater of the two used to estimate degradation - underestimation

A Aging related degradation subtracted from total to estimate cycling degradation -
overestimation of aging related losses

A Use interaction terms that account for aging and operation

A Gaps in bottom up model
A SEl layer is electronic insulator, hence solvent has to diffuse to graphite
A How can intercalation place if this is true?

A SEI considered to be impermeable to solvent, reaction rate controlled by slow
electron tunneling through SEI

A This would impede intercalation also i use mixed kinetics, account for SEI layer related
overpotential for both intercalation and SEI growth reaction



7

Pacific Northwest
NATIONAL LABORATORY

Top Down Model Approach

» Fit randomized data set, and verified the fit to remaining data

» Examples of predictors used

B Product of various powers of time t - t%°, t1, t2 with various terms such as
various powers of T, SOC, T&SOC, 1&dV/dQ

» Above approach used for each chemistry to get a global list of parameters
with decreasing order of importance

B Individual data set analyzed, and the global order of importance for
parameters used in conjunction with order of importance for individual data set
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In-house Data Capacity Loss Trends
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Comparison of Degradation for PS Grid

Service T 80% to 60% SOC Range

Proudly Operated by Baftelle Since 1965

: 1= Loss of lithium (Li)
A Duty cycle | for LFP slightly > nQ |
NMCL and NCA (since baseline N(Q2Q1) = Loss of graphite (G)
noT = Total loss

losses lowest)

A For LFP, Q1 peak occurs at 71% NQTC (Li+G)= Loss oathode / other

. %
SOC, for nickel based at much
lower SOC o 60%
A Hence, this peak traversed only 1 % .
. U 40%
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L 20%
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Service T 80% to 20% SOC Range

A NCA and NMC1 Q1 peaks occur at | Expressions for capacity loss from Reliability daté

15.6% and 26.6% SOC
LFP: K *t 9> + ki 2¢dV/dQ)dt
A NMC2 Q1 peak at 33.3% SOC
A NMC2 degrades much more thapNCA:  k1*t05
NCA and NMC1

NMC1: k1*t05
A LFP cycle related degradation > NCA
and NMC1 as Q1 at 71% SOC NMC2: kjf Kk A0 R+ k Rv O RO b

dVv/dg term shows up for LFPNMC2
NCA Cycle NMCl (_:):)cle NMC2
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I n = h O U S e Dat a. FI tt I n g Proudly Operated by Baftelle Since 1965
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Various Losses from dV/dQ Analysis

0.10
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Loss

0.00
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LFP PS 880 SOC

® Anode
® Lithium
@ Other
@ Total
| —
5 2 3
Date
LFP PS 820% SOC
® Anode
@ Lithium
® Other
® Total

® Apr

Dat

A Losof lithium main source of degradatio
A Lossof graphiteanode negligible
A Total loss nearly equal to loss of lithium

A Work ongoing to analyze other
chemistries

12
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Literature Data - Aging at Various T & SOC
298 K 323K
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» Parameters list for cell components used from literature
» Loss of lithium at anode SEI layer assumed to be degradation mode
» Rate constant for SEI growth and solvent diffusion coefficient in SEI from literature

Gap in literature:

» Approach 1
B SEl layer impermeable to electron
B Solvent diffusion through SEI needed for SEI formation at graphite/SEl interface

» Approach 2

B Electron tunneling through SEI layer applied only to SEI formation
® Graphite assumed to be in contact with the copper current collector
B Reaction occurs at SEl/electrolyte interface

Our approach:

» SEI forms all around graphite

» Electron transport through SEI for intercalation and SEI formation
» Use mixed kinetics T solvent diffusion/charge transfer

» Assigned stress values as f(Li content in graphite) T dVv/dQ




Bottom-up Model

Capacity Loss (%)

60%

40%1

20%-

0%

354C 1C rate NMC

0 1000 2000 3000
Cycles

M. Ecker et al, J. Power Sources, 248 (2014)

SOC range

= 0%-100%

- 10%-90%

= 25%-75%

= 40%-60%

= 43%-53%
47.5%-52.5%
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SEI layer growth assumed to occur on
graphite surface
Need electron transport and solvent
transport to graphite surface

A Triple phase boundary (fuel cells)
Electrode, electrolyte, separator, SEI
electronic conductivity, SEI equilibrium
potential from literature
Varykinetic rate constant tdit data

A 2.43x106%m/s

15
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C Top down model predicts degradation well

G

Interaction terms important
C High T + High SOC for example

dVv/dQ analysis provides guidance on degradation for various&©QEs

C Repeated excursion of SOC range where graphite peak occurs detrimental to SC
Nickelbased cathodes lead to greatdegradation possiblgue to transition
metal dissolution

Bottom upmixed kinetics modelalidated vs. literature data

C Room for improvement with better input parameters finetic rate

constant andsolvent diffusion coefficient

16
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F u t u r e WO r k Proudly Operated by Battelle Since 1965

G

Incorporatemore accurate parameters from single partioiedel
C Incorporate cathode degradation, electrolyte oxidation

Investigate effect of lithium plating on performance
Use irhouseFY1Qatac incorporating 3electroderesults

PNNL Pouch fabrication to study effect of anode to cathode capacity ratio
C affects SOC at whiadWM dQ peaks occur.

Quantify various losses for different gsdrvices frondV/ dQanalysis
Correlatelosses with anode to cathod@&/C) ratioand SO®peration range

Investigate effect of A/C on cathode degradatmhigh A/C drives up cathode V
C Cathode degradation, electrolyte oxidation, passivation layer on cathode

17
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Degradation Mechanisms

Cathode

Anode

Figure 2 Degradation mechanisms inribin batteries.
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